Maps Between Surfaces
 Outline

1. Linear Transformations

If V and W are vector spaces, a linear transformation from V to W is a function $T: V \rightarrow W$ such that

1. $T\left(\vec{v}_{1}+\vec{v}_{2}\right)=T\left(\vec{v}_{1}\right)+T\left(\vec{v}_{2}\right)$, and
2. $T(\lambda \vec{v})=\lambda T(\vec{v})$
for all $\vec{v}_{1}, \vec{v}_{2}, \vec{v} \in V$ and $\lambda \in \mathbb{R}$. Linear transformations $\mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$ correspond to $n \times m$ matrices, but linear transformations between other vector spaces don't correspond to matrices in any natural way.

2. Differentials of Maps

A map between surfaces is a differentiable function $f: S_{1} \rightarrow S_{2}$, where S_{1} and S_{2} are regular surfaces. (We will write f instead of \vec{f} to help the notation look a little cleaner.) The differential of such a map at a point $p \in S_{1}$ is a linear transformation

$$
d f_{p}: T_{p} S_{1} \rightarrow T_{f(p)} S_{2}
$$

That is, $d f_{p}$ takes as input a tangent vector \vec{t} at p, and outputs a corresponding tangent vector $d f_{p}(\vec{t})$ at $f(p)$.

The differential $d f_{p}$ can be defined using curves. Given a tangent vector \vec{t} at p, let $\vec{x}(t)$ be a curve on S_{1} such that $\vec{x}(a)=p$ and $\vec{x}^{\prime}(a)=\vec{t}$. Then

$$
d f_{p}(\vec{t})=\vec{y}^{\prime}(a)
$$

where $\vec{y}(t)=f(\vec{x}(t))$ is the corresponding curve on S_{2}.
Note: We won't actually use the definition of a differential very often. In most cases, it is much easier to compute with differentials using a parametrization, as described below.

3. Differentials using Parametrizations

Let $f: S_{1} \rightarrow S_{2}$ be a map between surfaces, and let $\vec{X}: U \rightarrow S_{1}$ be a parametrization. Let $\vec{F}: U \rightarrow S_{2}$ be the composition

$$
\vec{F}(u, v)=f(\vec{X}(u, v)) .
$$

In this case, it follows from the chain rule that

$$
d f_{p}\left(\vec{X}_{u}\right)=\vec{F}_{u} \quad \text { and } \quad d f_{p}\left(\vec{X}_{v}\right)=\vec{F}_{v}
$$

for any point p. More precisely,

$$
d f_{\vec{X}(u, v)}\left(\vec{X}_{u}(u, v)\right)=\vec{F}_{u}(u, v) \quad \text { and } \quad d f_{\vec{X}(u, v)}\left(\vec{X}_{v}(u, v)\right)=\vec{F}_{v}(u, v)
$$

4. Types of Maps

Let $f: S_{1} \rightarrow S_{2}$ be a map between two surfaces, let $\vec{X}: U \rightarrow S_{1}$ be a parametrization of S_{1}, and let $\vec{F}(u, v)=f(\vec{X}(u, v))$.

1. We say that f is equiareal if $\left\|\vec{F}_{u} \times \vec{F}_{v}\right\|=\left\|\vec{X}_{u} \times \vec{X}_{v}\right\|$.
2. We say that f is an isometry if it is bijective and

$$
\vec{F}_{u} \cdot \vec{F}_{u}=\vec{X}_{u} \cdot \vec{X}_{u}, \quad \vec{F}_{u} \cdot \vec{F}_{v}=\vec{X}_{u} \cdot \vec{X}_{v}, \quad \text { and } \quad \vec{F}_{v} \cdot \vec{F}_{v}=\vec{X}_{v} \cdot \vec{X}_{v}
$$

3. We say that \vec{f} is conformal if there exists a positive scalar $\lambda=\lambda(u, v)$ so that

$$
\vec{F}_{u} \cdot \vec{F}_{u}=\lambda \vec{X}_{u} \cdot \vec{X}_{u}, \quad \vec{F}_{u} \cdot \vec{F}_{v}=\lambda \vec{X}_{u} \cdot \vec{X}_{v}, \quad \text { and } \quad \vec{F}_{v} \cdot \vec{F}_{v}=\lambda \vec{X}_{v} \cdot \vec{X}_{v}
$$

Note that a bijective map is an isometry if and only if it is both equiareal and conformal.

5. The Jacobian

Let $f: S_{1} \rightarrow S_{2}$ be a map between two surfaces, let $\vec{X}: U \rightarrow S_{1}$ be a parametrization of S_{1}, and let $\vec{F}(u, v)=f(\vec{X}(u, v))$. Then the Jacobian of f at a point p is defined by the formula

$$
J f(p)=\frac{\left\|\vec{F}_{u} \times \vec{F}_{v}\right\|}{\left\|\vec{X}_{u} \times \vec{X}_{v}\right\|}
$$

More precisely,

$$
J f(\vec{X}(u, v))=\frac{\left\|\vec{F}_{u}(u, v) \times \vec{F}_{v}(u, v)\right\|}{\left\|\vec{X}_{u}(u, v) \times \vec{X}_{v}(u, v)\right\|}
$$

Note that f is equiareal if and only if $J f=1$.
The Jacobian measures the area expansion of the map f around the point p. That is, if R_{1} is an infinitesimal region around p with area $d A_{1}$, and $R_{2}=f\left(R_{1}\right)$ is the corresponding region in S_{2}, then the area $d A_{2}$ of R_{2} is given by the formula

$$
d A_{2}=J f(p) d A_{1}
$$

More generally, if R_{1} is any region in S_{1} on which f is one-to-one, and $R_{2}=f\left(R_{1}\right)$ is the corresponding region in S_{2}, then

$$
\operatorname{area}\left(R_{2}\right)=\iint_{R_{1}} J f d A
$$

